

Voltage, Current, and Resistance

Ohm's Law

Circuits Pie Chart

Voltage Division

Resistors in series "share" the voltage applied to them.

$$
v_{2}=i R_{2}=\left(\frac{v}{R_{1}+R_{2}}\right) R_{2}
$$

$$
v=v_{1}+v_{2}
$$

$$
=i\left(R_{1}+R_{2}\right)
$$

$$
v_{2}=\frac{R_{2}}{R_{1}+R_{2}} v
$$

Voltage Divider Example

Find the voltage v_{0} and the power dissipated in both resistors.

$$
\begin{aligned}
& v_{0}=66 \mathrm{~V} \\
& P_{R 1}=1.88 \mathrm{~W} \\
& P_{R 2}=1.32 \mathrm{~W}
\end{aligned}
$$

Instrument Loading

- The concepts of Input and Output Impedance $\left(\mathrm{Z}_{\text {in }}\right.$ and $\left.\mathrm{Z}_{\text {out }}\right)$
- Fluke 8846A Specs:
- Fluke 8846A Specifications

Measuring Voltage, Current, and Resistance

- An ideal meter has no effect on the circuit variable being measured.
- That means when an ideal ammeter is placed in series to measure the current through an element, it should have an equivalent resistance of 0Ω.
- That means when an ideal voltmeter is placed in parallel to measure the voltage across an element, it should have an equivalent resistance of $\infty \Omega$.

Instrument Loading - Example

Find v_{0} if the meter placed in parallel with R_{2} has an input resistance of:
a) $10 \mathrm{M} \Omega$.
b) $100 \mathrm{k} \Omega$.
c) $1 \mathrm{k} \Omega$.

$$
\begin{aligned}
& v_{0 a}=65.87 \mathrm{~V} \\
& v_{0 b}=64.75 \mathrm{~V} \\
& v_{0 c}=22.46 \mathrm{~V}
\end{aligned}
$$

